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In this part of the lecture notes on securities trading we aim at the limiting

transition from a binary market of part I towards the Black-Scholes model of a

Gaussian market in which the stock price develops as the geometric Brownian

motion.

1. Introduction

1.1. Outline

In this paper we consider the situation in which a binary securities market
allows for the Gaussian approximation to be carried out in section 4.5. For
the necessary material on binary markets (see section 4 below) we refer to
the previous papers [18] and [17], section 3, hereafter called part I and part
II, respectively. Both have appeared in the previous issues of CWI Quarterly

devoted to Mathematics of Finance. The �rst of these issues contains also
the paper [41] which we would recommend for a quick review on rudiments of
stochastic calculus.

Throughout the present paper the basic conditions B and S are assumed,
see the next section. They restrict the limiting behaviour of the asset prices.
Condition B on the bond is the same as in part II, condition 3.1.1, while
condition S on the stock di�ers completely from condition 3.1.2 in part II. It
is in fact the adaptation of the conditions well-known in probability theory,
under which a random walk admits a di�usion approximation (see e.g. [8],
[21] and various papers in [43]). But since the reader is not supposed to be
familiar with advanced methods of the probability theory, the presentation
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is kept at the same low technical level as in the previous parts by means of
certain unsophisticated algebraic considerations. The emphasis then will be on
phenomenological understanding the cash ow mechanism in the market under
consideration, that is shown to reveal strong similarity to physical Brownian
motion (more generally, to di�usion with drift) or to the molecular mechanism
of heat ows, cf sections 2 and 3. For more details on the economical laws
governing the market, we refer to the seminal paper [3] by Black and Scholes.
The results obtained in this manner in the sections 4.5 and 5, are of heuristic
nature (cf [9], [25] and [48]), for the full rigour would require higher technical
level of the general theory of stochastic processes, cf [11], [12], [16], [19], [20],
and [46] { [48]. For further reading we would recommend a selective list of
papers [1], [2], [7], [27], [28], [30], [31], [38] and [39] (some of these papers
deviate considerably from the present context and carry the reader far a�eld).
Due to growing interest in both research and teaching a number of introductory
papers and books are appeared in di�erent languages, e.g. [5], [10], [13], [32],
[36] and [40].

The point of view taken in the present paper is somewhat di�erent: an
attempt is made to facilitate reading without an advanced probabilistic pre-
requisite. For instance, section 2 introduces the reader to Brownian motion
and its original mathematical model by Wiener. The relation to di�usion and
thermal conductance is discussed in section 3. Usage of heat equations for the
description of the cash ow dynamics in section 5 is preceded by proposition 4.3
that asserts an approximate heat equation for value processes in binary markets
(somewhat in the spirit of Kac's paper on random walk in [43]). Moving to-
wards the continuous-time model, in section 4.5 the approximation is discussed
to the option pricing formula for the European call option. The �nal result is
the celebrated Black-Scholes formula (5.20), cf [3], [24] or [29], section 5.8. In
section 5 the Black-Scholes model is described in which the stock price process
is assumed to be a geometrical Brownian motion. The theory is developed
along the same lines as in the previous parts: the properties of the possible
states of the discounted stock prices asserted in proposition 5.1 are shared by
every discounted value process for a self-�nancing strategy (see proposition 5.2)
and all these stem from the fact that the Gaussian transition probability den-
sity u in (5.5) and (5.11) satis�es the heat equation (3.2). In part II we have
a similar situation: the Poisson distribution possesses the property asserted in
lemma 4.3.1 and therefore we have (4.1.14) and (4.2.12). The counterpart in
part I of these are (3.4.4) and (3.6.1), respectively. These are basically the argu-
ments for the completeness of our markets; cf part I, proposition 4.3.3, part II,
proposition 4.3.4, and the present part, proposition 5.4. In these propositions
we construct the hedging strategies against any wealth desired at the terminal
date T . Finally, pricing of contingent claims is accomplished by the procedure
described at the end of section 4.
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1.2. Basic conditions

As in part I and part II, section 3, it is assumed that in a securities market
two assets, called the bond and stock, are traded during the time interval
[0; T ]. New prices on both assets are announced at certain �xed trading times,
say t0 < t1 < � � � < tN where t0 = 0 is the current date and tN = T the
terminal date. The prices on the bond and stock announced at the nth trading
time tn with n 2 f0; 1; : : : ; Ng are denoted by BN

n and SNn , respectively. For
simplicity, we restrict our attention to the special case of markets where new
prices are announced regularly so that trading times are equidistant, given by
tn = nT

N
; n = 0; 1; : : : ; N; and the lengths of the trading periods �tn = tn�tn�1

for n 2 f1; : : : ; Ng are all given by �tn = T
N

(in fact one can proceed without
this speci�cation, however at the expense of some details which we want to
avoid). The formulations are indeed somewhat simpli�ed. For instance, the
corresponding price processes BN = fBN

t gt2[0;T ] and SN = fSNt gt2[0;T ] are
de�ned in the entire time interval [0; T ] by BN (t) = BN

btN=T c and SN(t) =

SNbtN=T c, where bxc denotes the largest integer not exceeding x. Put BN (0) = 1

and SN (0) = s for simplicity, where s is a certain positive number. The
discounted stock price process is denoted as in the previous parts by �SN =

f �SNt gt2[0;T ] with �SN (t) =
SN (t)
BN (t)

:

The bond is a riskless asset and the price process BN evolves along a pre-
scribed piecewise constant trajectory, while the stock is a risky asset and the
price process SN is allowed to evolve along 2N di�erent trajectories of the same
type. These trajectories are speci�ed by the binary transition scheme of part I,
section 3.1. They all start from the same �xed state s, the current state of the
stock price s = sN10 > 0: Further, the whole price tree is uniquely determined
by two o�springs at each trading time. If at tn�1 with n 2 f1; : : : ; Ng the
stock price was in state sNk;n�1, then at the consecutive trading time tn it is

announced either in state sN2k;n or sN2k�1;n with sN2k;n > sN2k�1;n > 0: Hence if

t 2 [tn; tn+1) with some n 2 f0; 1; : : : ; Ng the stock price SN(t) may occupy
one of the states fsNk (t)gk=1;:::;2n with sNk (t) � sNkn. During the �rst period
[t0; t1), for instance, the stock price stays in the current state s > 0. At the
terminal date tN = T the stock price SN (T ) may occupy one of 2N states
fsNk (T )gk=1;:::;2N . In this case we also say that the stock price evolves along
the kth trajectory. In order to describe the stock price development along this
particular trajectory, we specify the stock price state at each t 2 [tn; tn+1) for
n = 1; : : : ; N by the identity sNkn(t) � sNkn;n where kn = d k�1

2N�n e, cf part I,
de�nition (2.1.4), or part II, formula (3.1.5). We have used the notation dxe
for the smallest integer exceeding x.

It is supposed throughout the present paper that the number N of the
trading times is very large, and the possibilities are sought for approximating
the option pricing formulas of part I. To this end, we letN !1. We can expect
in the limit sensible results if only the grid ft0; t1; : : : ; tNg of trading times
becomes �ner and �ner in the sense that the mesh width of the grid tends to
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zero as N !1 (the mesh width is the maximal length of the trading periods).
But this is certainly the case, as we have already chosen for the equidistant grid
with the constant length T

N
of the trading periods. Further, the asset prices

ought to be made dependent on the index N in a certain special manner. See
the conditions B and S formulated below in terms of corresponding cumulative
return processes RN = fRN

t gt2[0;T ] and RN = fRN
t gt2[0;T ] with

RN (t) =

Z t

0

dBN
u

BN
u�

=
X

u2(0;t]

�BN
u

BN
u�

and RN(t) =

Z t

0

dSNu
SNu�

=
X

u2(0;t]

�SNu
SNu�

:

For more details see part II, section 3.1. Concerning the bond we assume
precisely the same asymptotic behaviour as in part II.

Condition B. As N !1 the increase of the return process on the bond over
each trading period becomes proportional to the length of this period: for each
n = 1; : : : ; N

RN (tn)�RN (tn�1)

tn � tn�1
= r + %Nn

where r > 0 is a positive constant, while %Nn is a negligible remainder term.

See part II, remark 3.1, for the exact meaning of the later term. Obviously,
condition B means that at the trading time tn with n 2 f1; : : : ; Ng the return
on the bond

�Nn � �RN (tn) = RN (tn)�RN (tn�1) (1.1)

is asymptotically proportional to the length of the preceding period:

�Nn = (r + %Nn )�tn � r�tn: (1.2)

The sign � indicates that the ratio of the two sides tends to unity. As is shown
in part II, section 3, we have for each t 2 [0; T ] that

RN (t) � rt and BN (t) � ert; (1.3)

i.e. asymptotically, the cumulative return process on the bond is assumed to
increase with a constant interest rate r.

The conditions on the behaviour of the returns on stock �RN (tn) = RN(tn)�
RN (tn�1) at trading times ftngn=1;:::;N are formulated as in part II in terms
of their states

rNkn �
sNkn

sNkn�1;n�1

� 1; k = 1; : : : ; 2n; (1.4)

where kn�1 = dk
2
e like in part II, formula (3.1.14). But the present conditions

are completely di�erent.

Condition S. At the trading time tn with some n 2 f1; : : : ; Ng the return on
the stock �RN (tn) is in one of the 2n states
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rNkn =

�
�
p
�tn + (a+ �Nkn)�tn if k is even

��p�tn � (b+ �Nkn)�tn if k is odd
(1.5)

where � > 0, a and b are some constants, while f�Nkngk=1;:::;2n are negligible
remainder terms as N !1.

The negligibility of these remainder terms is understood as in part II, remark
3.1.3. Using the same sign � as above we may express (1.5) in the following
form

rNkn �
�
�
p
�tn + a�tn if k is even

��p�tn � b�tn if k is odd:
(1.6)

If condition B holds as well, then at the trading time tn the states f�rNkngk=1;:::;2n

of the discounted return

� �RN (t) =
��SNt
�SNt�

=
�RN (t)��RN (t)

1 +�RN (t)
(1.7)

(cf part II, formula (3.1.13)) are approximated as follows. Due to (1.7) it follows
from (1.2) and (1.6) that

�rNkn �
�
�
p
�tn + (a� r)�tn if k is even

��p�tn � (b+ r)�tn if k is odd:
(1.8)

By obvious reasons, the parameter � > 0 determining the amplitude of the
leading terms in these formulas is often called volatility (as well as di�usion
coe�cient or thermal di�usivity, depending on the context).

To grasp the idea behind the approximations in sections 4.5 and 5, observe
the following. Like in the previous parts, let the even state indices correspond to
the upward displacements, and the odd indices to the downward displacements.
If now the same weight 1

2
are assigned to both of these displacements, then in

virtue of (1.8) the average return is approximated by

1

2
(�rN2k;n + �rN2k�1;n) � ��tn (1.9)

with a constant

� =
1

2
(a� b)� r (1.10)

called the drift coe�cient, since the drift �t in (5.3) and thereafter is in fact
the accumulation of instant drifts on the right hand side of (1.9). Let us now
average di�erently to get rid of the drift. Namely, let us correct the weights for
upward and downward displacements to be 1

2
(1� �

�

p
�tn) and

1
2
(1+ �

�

p
�tn),

respectively. This results in the zero mean on the right hand side: the average
return is approximated by

1

2
(1� �

�

p
�tn)�r

N
2k;n +

1

2
(1 +

�

�

p
�tn)�r

N
2k�1;n � ��tn � ��tn = 0: (1.11)
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In section 4.2 the weights just used occur again in formula (4.9), to serve as
the approximation to so-called risk neutral probabilities. The usage of the last
term is in clear connection with the fact expressed by (1.11) that the drift is
eliminated by suitable averaging.

Next, we look at the terms proportional to
p
�tn that are all the same in

(1.5), (1.6) and (1.8). The sequence of the corresponding upward and downward
displacements (as the index n runs trough f0; 1; : : : ; Ng) are symmetrical and
form the so-called symmetrical random walk. This is a mathematical model of
the hypothetical situation in which a minute particle, immersed in a liquid, suf-
fers many collisions with the molecules of the medium. These molecules, being
in thermal motion, impart energy and momentum to the particle, so that it un-
dergoes very irregular and erratic motion. If we imagine the collisions regularly
spread in time with intervals equal �tn = T

N
that results in either upward or

downward displacements of equal chance with small steps of size �
p
�tn, then

we end up in the situation under consideration. Since the number of molecules
N is very large, it is convenient to let N !1 and to look for suitable approx-
imations. One of the central results of probability theory tells us that since
the displacements are of considerably larger order of magnitude �

p
�tn then

the length �tn of the time interval, degeneracies are excluded and the limiting
process turns out to be mathematical Brownian motion; see the previous sec-
tion for relevant references. This process, denoted in the present paper by W ,
will occur in the de�nitions (5.2) and (5.3), presenting the risky component in
securities market models with continuous-time trading. Section 2 is devoted to
Wiener's original construction of Brownian motion (or Wiener process, as it is
often called) and to various properties of its trajectories, although it may be
not so easy to imagine their appearance. But if we try to imagine a very long
realization of our symmetrical random walk plotted on a graph with regular
small time intervals and with displacements per time interval proportional to
the square root of its length, then we are led to expect that the trajectory
of the limiting process, although continuous, has an in�nite number of small
spikes in any �nite interval and is therefore non-di�erentiable. This is indeed
the case, see section 2.4 for further comments.

1.3. Gaussian distribution

In the present paper an important rôle is played by the so-called probability

integral

G(x) =

Z x

�1
g(y)dy (1.12)

with the density

dG(x)

dx
� g(x) =

1p
2�
e�

x2

2 : (1.13)

Due to the property
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Z 1

�1
g(y)dy = 1 (1.14)

this is a probability distribution, called the standard Gaussian or normal dis-
tribution. Generally, the Gaussian distribution G(�;�; �2) with two parameters
� 2 (�1;1) and �2 2 (0;1) called the expectation and variance respectively,
is de�ned by G(x;�; �2) = G(x��

�
), with the density

dG(x;�; �2)

dx
� g(x;�; �2) =

1p
2��

e�
(x��)2
2�2 :

This density will frequently occur in our considerations through the function
u(�; �) of space coordinate x 2 (�1;1) and time t 2 (0;1), de�ned by

u(x; t) � g(x; x0 + �t; �2t); (1.15)

where � and �2 are certain parameters, while x0 is a certain initial site so that

lim
t#0

u(x; t) = u(x; 0) = �(x� x0): (1.16)

Here � is Dirac's delta with the following reproducing property: for any bounded
continuous function fZ 1

�1
�(x � x0)f(x)dx = f(x0): (1.17)

It is indeed not hard to see that for a such f

lim
t#0

Z 1

�1
u(x; t)f(x)dx = f(x0):

To this end let t # 0 in the integral

1p
2�t�

Z 1

�1
e�

(x�x0��t)2
2t�2 f(x)dx =

1p
2�

Z 1

�1
e�

y2

2 f(x0 + �t+ y�
p
t)dy;

where the substitution x�x0��t
�
p
t

= y is made. Since the limit can be taken

under the integration sign, from (1.13) and (1.14) we get the desired f(x0).
For brevity, we will use the following notations for partial derivatives:

ut =
@u

@t
; ux =

@u

@x
and uxx =

@2u

@x2
: (1.18)

2. Brownian motion

2.1. Wiener's construction

In this section we will discuss Wiener's measure-theoretical analysis of physical
Brownian motion that had been discovered at about a century earlier by Brown
in 1820's, who made microscopic observations on the minute particles contained
in the pollen of plants suspended in a liquid. He observed the highly irregular
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motion of these particles and made the �rst attempt to interpret this strange
phenomenon. However, the true cause of the motion became known much
later. It was understood that highly irregular and erratic displacements arise
from thermal motion of the molecules of the liquid in which the particles are
immersed, as the result of an extremely large number of collusions with these
molecules. One of the �rst attempts to establish the mathematical framework
for Brownian motion was undertaken at around the year 1900 by Bachelier,
whose goal in his thesis on "theory of speculation" was to develop methods for
option valuation (see [24], p 217, for a short description of these ideas). Few
years later Einstein proposed the mathematical theory which we will touch
upon in section 3.1. Meanwhile, in this section 2 we focus on Wiener's ideas
as presented in his later books [44] and [45]. First, we will describe a set
of trajectories along which the mathematical Brownian motion is allowed to
evolve in time (called below Brownian paths, for brevity). Then we indicate
various properties of this set of functions with which one is able to establish
a sophisticated integration theory. We will start with setting up a mapping
between certain sets of functions called quasi-intervals, and certain subintervals
of the unit interval 0 � � � 1. This will be done in such a manner that
the obtained functions w(�; �), measurable in both arguments (t; �), will be
continuous in time t for almost every �. These will be trajectories of our
Brownian motion.

2.2. Quasi-intervals

Let C0 be a class of all real valued functions of time which start from the
origin, i.e. if f 2 C0, then f(0) = 0. We are now going to de�ne particular
subsets of C0, called quasi-intervals for a reason to become clear soon. Let n
be any positive integer, and let tn = ftjgj=1;:::;n be a set of n instants so that
0 < t1 < : : : < tn � T: These are n points on the t-axis. Through each of these
points we pass the line perpendicular to the t-axis. On each such line, say jth

one, j = 1; : : : ; n, we choose an interval �j of the real axis. A quasi-interval
In(tn; �1; : : : ; �n) consists of all real-valued functions f 2 C0 whose values at tj
are con�ned to �j , i.e. f(tj) 2 �j ; j = 1; : : : ; n. For example, take n = 2 and
t2 = f 1

2
T; Tg and consider the following four quasi-intervals:

I2(t2; �`1 ; �`2); `1; `2 = 1; 2; (2.1)

with

�1 = [�1; 0]; �2 = (0;1]: (2.2)

Obviously, these four quasi-intervals partitioning the entire class C0, since
each particular pair is disjoint (no function can belong to two di�erent quasi-
intervals) and at the same time their union coincides with C0 (each function
necessarily belongs to one of these quasi-intervals). For instance, I2(t2; �1; �1)
consists of functions from C0 whose values at t = 1

2
T and t = T are non-positive,

i.e. if f 2 I2(t2; �1; �1), then f(
1
2T ) � 0 and f(T ) � 0. In this section we will
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be only interested in such sets of quasi-intervals, partitioning C0. Moreover,
starting from the above partition, we will construct a sequence of �ner and
�ner partitions of a special type. At the �rst stage just described the subindex
n was equal 2. At the next stage it will be equal 22, then 23 and so forth. The
number of quasi-intervals involved at each stage will increase rapidly: starting
from 4, at the nth stage it will become (2n)2

n

. But let us �rst describe the
second stage. Take n = 4 and t4 = f 1

4
T; 1

2
T; 3

4
T; Tg: This t4 contains the

previous t2, of course. Put

�1 =
h
�1; tan

�
��
4

�i
; �2 =

�
tan

�
��
4

�
; 0
i
;

�3 =
�
0; tan

�

4

i
; �4 =

�
tan

�

4
;1
i
:

This re�nes the previous segmentation (2.2) of a real line (drawn perpendic-
ularly to the t-axis). Recall that tanx is a monotonically increasing function
of x 2 ���

2
; �
2

�
, with tan 0 = 0 and tan

���
2

�
= �1. Note that this con-

crete choice is immaterial, since any other monotonically increasing real-valued
function will do as well. De�ne now a partition of C0 by the 44 quasi-intervals

I4(t4; �`1 ; : : : ; �`4); `1; : : : ; `4 = 1; : : : ; 4: (2.3)

Clearly, this is a partition �ner then the previous one since, for instance,[
`1;`3=1;:::;4

[
`2;`4=1;2

I4 (t4; �`1 ; : : : ; �`4) = I2(t2; �1; �1);

and each quasi-interval of the previous stage is obtained by the union of a
certain number of quasi-intervals of the next stage.

Carrying on in this manner, at the nth stage we �x the set of 2n dyadic
instants t2n =

�
j
2nT

	
j=1;:::;2n

and partition C0 by the following quasi-intervals:
I2n (t2n ; �`1 ; : : : ; �`2n ) ; `1; : : : ; `2n = 1; : : : ; 2n;

where

�1 =

�
�1; tan

(1� 2n�1)�

2n

�
;

and

�` =

�
tan

(`� 1� 2n�1)�

2n
; tan

(`� 2n�1)�

2n

�
; ` = 2; 3; : : : ; 2n:

For example, I2n (t2n ; �1; : : : ; �1) consists of all real-valued functions f 2 C0
whose values at the 2n dyadic instants t = 1

2n
T; 2

2n
T; : : : ; T are restricted by

the following inequalities:

f

�
j

2
T

�
� tan

�
1� 2n�1

�
�

2n
; j = 1; : : : ; 2n:

Of course, we have in this section purposely chosen for the exponential in-
crease of dyadic instants of successive partitioning, in order to guarantee the
convergence of certain procedures which will be set up below.
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2.3. Equicontinuity

For each n = 1; 2; : : : we have constructed (2n)
2n

quasi-interval partitioning
the entire class C0, since they do not intersect and their union coincide with
C0. Following Wiener (cf [45]), we associate with each such quasi-interval, say
I2n (t2n ; �`1 ; : : : ; �`2n ), a positive number p fI2n (t2n ; �`1 ; : : : ; �`2n )g equal toZ

�`1

� � �
Z
�`
2n

2nY
j=1

u (yj � yj�1; tj � tj�1) dy1 � � � dy2n ; (2.4)

where u is related to the Gaussian density g trough (1.15) with x0 = � = 0.
For convenience we put t0 = y0 = 0. Using property (1.14) we obtain for each
positive integer n that

2nX
`1���`2n=1

p fI2n (t2n ; �`1 ; : : : ; �`2n )g = 1: (2.5)

Therefore the number de�ned by (2.4) is called the probability associated with
the quasi-interval I2n (t2n ; �`1 ; : : : ; �`2n ).

As is mentioned in section 2.2, each quasi-interval of the nth stage may be
represented by the union of certain number of quasi-intervals of the next n+1st

stage. If, say

I2n (t2n ; �`1 ; : : : ; �`2n ) =
[
I2n+1

�
t2n+1 ; �`1 ; : : : ; �`2n+1

�
with a certain union, then it is easily veri�ed that

p fI2n (t2n ; �`1 ; : : : ; �`2n )g =
X

p
�
I2n+1

�
t2n+1 ; �`1 ; : : : ; �`2n+1

�	
; (2.6)

where the summation extends over the same set of indices as in the preceding
union.

This procedure of ascribing probabilities to quasi-intervals may be nicely
characterized by the following mapping. At the �rst stage map the quasi-
intervals (2.1) to the unit interval by starting at the origin and laying out on the
�-axis 4 adjoining segments whose lengths are p fI2 (t2; `1; `1)g, p fI2 (t2; `1; `2)g,
p fI2 (t2; `2; `1)g and p fI2 (t2; `2; `2)g, respectively. At the second stage map
the quasi-intervals (2.3) to the unit interval by continuing to translate the prob-
abilities into lengths and by arranging the necessary segments in such a way
that if a given quasi-interval I4 (t4; �`1 ; : : : ; �`4) is a portion of a certain quasi-
interval of the �rst stage, then the corresponding segments stand in the same
relation. It should be clear now that if this procedure is kept up inde�nitely,
the lengths of the image intervals on 0 � � � 1 will tend to zero.

In fact, no speci�cation (2.4) is needed to satisfy the properties (2.5) and
(2.6), but the following property, called equicontinuity, is based upon this spe-
cial form of the associated probabilities (Gaussian form as speci�ed in sec-
tion 1.3). Let us formulate this as a separate proposition. For h 2 (0;1) and
� 2 �0; 1

2

�
denote by C0(h; �) the subset of C0 consisting of functions f 2 C0

such that for all dyadic instants t1 and t2
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jf(t1)� f(t2)j � hjt1 � t2j�: (2.7)

Note that if h < h0, then C0(h; �) � C0(h0; �). Denote by C0(h; �)c the comple-
ment set to C0.
Proposition 2.1. For h 2 (0;1) and � 2 �0; 12� the subset C0(h; �)c of C0
can be enclosed in a union of quasi-intervals whose probability (the sum of the

probabilities of the involved quasi-intervals) is less than a certain number p(h)
which tends to zero, i.e. p(h)! 0 as h!1.

For the present we assume this result, since the proof is too lengthy to be
reproduced here, though not technically di�cult, see e.g. Wiener et. al.
[45], section 2.3. For a general context on equicontinuity sets of functions and
related results, including Ascoli's theorem which we are going to apply below,
see Dieudonn�e [14], section 7.5. In order to use these general arguments
we note �rst that proposition 2.1 allows us to associate with any " > 0 a
positive number h0 = h0(") and to con�ne our considerations to h's such that
p(h) < " for h > h0. We then delete a denumerable set of quasi-intervals
of total probability < " so as to obtain the remainder in C0 that consists of
functions satisfying (2.7) for all dyadic couples of instants from [0; T ]. But
we seek more - we want a set of functions satisfying (2.7) at all couples of
instants from [0; T ], not necessarily dyadic. Therefore we have to modify the
set obtained above (of functions f satisfying (2.7) at all dyadic couples of
instants), associating with each element f a unique continuous function F by
identity F (t) = f(t) at a dyadic t and F (t) = limtn!t f(tn) where ftngn=1;2;:::

is a sequence of dyadic instants converging to t. This modi�cation yields the
set of continuous functions F with property (2.7) at each t1; t2 2 [0; T ]. This is
an equicontinuous class of uniformly bounded (by the above h) functions and
in virtue of Ascoli's theorem mentioned above every sequence within this class
has a uniformly convergent subsequence. The limit is itself continuous, with
the equicontinuity property (2.7) at each t1; t2 2 [0; T ].

In view of the above construction and of proposition 2.1, we are led to
shrink the interval 0 � � � 1 by removal of a set of points of a negligible total
length, so that every point � that remains has a threefold characterization:

a) by a sequence of intervals closing down on it,

b) by the sequence of corresponding quasi-intervals and

c) by a uniquely determined function F common to this sequence of quasi-
intervals, equicontinuous in the above sense.

We denote this function by w(�; �). For variable � these are the trajectories of
our Brownian motion.

2.4. Quadratic variation

The Brownian paths, although almost all continuous, turn out to be very ir-
regular in nature. It can be shown, for instance, that for almost all � and each
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�xed instant t

lim sup
�t!0

w(t +�t; �)� w(t; �)

�t
=1:

In other words, at each instant t the Brownian paths have in�nite upper deriva-
tives. Some explanation of this phenomenon is provided by the fact that in the
prelimiting situation our symmetric random walk was allowed to make steps of
considerably larger order of magnitude than the length of time intervals (see
the discussion at the end of section 1.2).

The next uncommon fact about the irregular character of the Brownian
paths is that they almost all have in�nite length. This follows from the following
general remark concerning any continuous function f of time t 2 [0; T ]: for any
grid ft0; t1; : : : ; tNg

NX
j=1

[�f(tj)]
2 � max

j2f1;:::;Ng
j�f(tj)j

NX
j=1

j�f(tj)j

with �f(tj) = f(tj)�f(tj�1). Hence, if the continuous function is of bounded
variation (in the sense that the sum on the right is bounded independently
of the choice of the grid or, geometrically, that the graph has in�nite length)
the sum on the left vanishes as the mesh width tends to zero. The following
proposition asserts that this sum tends to zero for almost no Brownian path,
hence almost no path has bounded variation.

Proposition 2.2. For any time interval [0; t], let ft0; t1; : : : ; tNg be the dyadic
grid of equidistant instants tj =

j
N
t with N = 2n. Then for almost all � the

sum of squares of the increments converges as n!1:

NX
j=1

[�w(tj ; �)]
2 ! �2t: (2.8)

The proof of this important result lays beyond the scope of the present paper
(though probabilistic proofs are not very complicated, see e.g. [15], section
8.2, or [26], section 2.2). Instead, let us provide some intuitive explanation
by turning back to the prelimiting situation of the symmetric random walk:
within each time interval the square of the step size equals to the length of this
interval multiplied by �2. Hence, the sum of squares yields the length t of the
whole interval [0; t] multiplied by the same �2.

Note that the right-hand side in (2.8) is the same for almost all �. The lim-
iting function �2t is special: within a wide class of stochastic processes (martin-
gales with continuous sample paths, see [41], proposition 7.3) with convergent
sums of type (2.8), only Brownian motion possesses this limit. Generally, such
a limit, obtained from the increments of a certain underlying process X , de-
pends on � and therefore constitutes a stochastic process with non-decreasing
sample paths of bounded variation. It is usually denoted by hXi and called the
quadratic variation process for X . If, for instance, X is a stochastic process
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of bounded variation, then hXit � 0. As we have already seen hWit = �2t.
Regarding quadratic variation processes, this is all we need for the present, see
[41] for further references. In addition we only observe, anticipating section 5,
that also h �R�it = �2t for the discounted return process �R� = f �R�

t gt2[0;T ], since
the presence of the drift �t in (5.3) is immaterial.

2.5. Itô's integral

Since almost no Brownian path is of bounded variation, the integral with re-
spect to W cannot be de�ned in any conventional way, unless an integrand
itself is of bounded variation, as in the latter case it can be de�ned in the
usual Riemann-Stieltjes sense, see e.g. [23], p 55, or [34], pp 14{15. Indeed, if
the integrand � has sample paths �(�; �) of bounded variation for almost all

�, then one can overcome di�culties on de�ning
R t
0
��dW� by means of the

integrating by parts formula which yieldsZ t

0

�(�; �)dw(�; �) = �(t; �)w(t; �) �
Z t

0

w(�; �)d�(�; �): (2.9)

This device is e�cient for our purposes in section 5, since the integrands are
interpreted there as investor's portfolios during a �nite trading period that by
nature cannot have sample paths of in�nite length.

However in theory we need more, for instance, the integral
R t
0
W�dW�, which

cannot be de�ned in the above sense. An attempt to evaluate this integral
explicitly would not lead to usual answer 1

2W2
t (as would be the case, if W

were of bounded variation). Instead, we get

2

Z t

0

W�dW� =W2
t � hWit (2.10)

with hWit = �2t the quadratic variation ofW , see the previous section. In order
to understand how the additional term (referred sometimes to as Itô's correction
term) enters into consideration, look at the following Riemann-Stieltjes sum for
this integral: with the notations of proposition 2.2

2

NX
j=1

w(tj�1; �)�w(tj ; �) = w2(t; �)�
NX
j=1

[�w(tj ; �)]
2:

The identity is obtained by elementary algebra, cf [23], p 60, [26], p 157. Let
now N ! 1. According to Itô's integration theory, the left hand side tends
to 2

R t
0
w(�; �)dw(�; �), while the second term on the right tends to �2t by

proposition 2.2.
Surely, it is just impossible to enter here in details of stochastic calculus. For

a good introduction we have already referred to [41] where further references
can be found. For the same purposes one can also use [34], section 1.1.3, [23],
chapter 4, [26], section 4.5 (or [37] for more advanced theory). In the sequel
we only intend to give some insight in formulas needed in section 5. Firstly,
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we observe that the work on integration begins with a class of elementary
integrands so that there is no confusion about how to integrate them. These are
so-called simple processes whose sample paths are piecewise constant functions
with discontinuities at certain �xed instants. They depend at each t 2 [0; T ]
only on the past of Brownian motion. See [41], formula (5.2). Then the integral
with respect toW over any interval [0; t] is de�ned in an obvious manner as the
corresponding Riemann-Stieltjes sum: if � is an integrand whose sample path
is observed to jump at instant tj with �j(�); j = 0; 1; : : : ; n, then

R t
0
��dW� is

de�ned byZ t

0

�(�; �)dw(�; �) =

nX
j=0

�j(�)[w(tj+1 ^ t; �)� w(tj ^ t; �)];

cf [41], formula (5.3); for properties of this integral, see [41], proposition 5.2.
We have, for instance, that the quadratic variation of the continuous process
Xt =

R t
0
��dW� is

hXit =
Z t

0

�2
�dhWi� = �2

Z t

0

�2
�d�: (2.11)

Next, the de�nition is extended to a class of integrands approachable in a
certain sense by sequences of simple processes. The integral of an integrand
from this class is de�ned as the limit of the corresponding integrals of simple
processes (the limit turns out to be independent of a particular choice of the
approximating sequence). This is quite a delicate task. What makes theory
operational is that one can take care about integration rules known from ordi-
nary calculus. For instance, the chain rule says that if X is as above and 	 is
a suitable integrand, thenZ t

0

	�dX� =

Z t

0

	���dW�: (2.12)

Next another important rule { Itô's formula (called sometimes the change of
variables rule). Let u be a certain su�ciently smooth function of its arguments
x and t, a space coordinate and time respectively, at least continuously dif-
ferentiable in time and twice di�erentiable in space. Then with X possessing
property (2.11) and with the notations (1.18) we have

u(Xt; t) = u(X0; 0) +

Z t

0

ux(X�; �)dX� +

Z t

0

ut(X�; �)d�

+
1

2
�2
Z t

0

uxx(X�; �)dhXi� : (2.13)

The proof is based on the fact that the quadratic variation hXi is non-zero,
given by (2.11). Hence, when the function u(�; �) is developed in Taylor's expan-
sion, there is a (unconventional) contribution from the second order term that
yields Itô's correction - the last term in (2.13). This is a fundamental formula
of stochastic calculus and its proof can be found in the textbooks we refer to,
e.g. in [34], proposition 1.1.4. This section is closed by two applications.
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(i) Put u(x; t) = x2. From (2.13) we obtain an extension of (2.10) to X .

(ii) Put u(x; t) = ex+�t with some constant � and apply (2.13) to X =

W � 1
2 hWi, as is done in [41], p 371. We obtain that Zt = eWt+�t� 1

2
�2t

satis�es the following linear integral equation Zt = 1 +
R t
0
Z�dW�. The

solution Z is known as Dol�eans-Dade (or stochastic) exponential and is
denoted by Z = E(W). Clearly, if W in this integral equation were an
ordinary function of bounded variation, say F , then we would simply have
the ordinary exponential Z = E(W) = eF .

3. Heat equations

3.1. Fokker-Planck equation

In this section we follow Hida [26] in his short account of Einstein's ideas
concerning Brownian motion. We need to consider only the projection of the
motion onto a line. The density of pollen grains per unit length at an instant t
will be denoted by u(�; t). This is a function of a space coordinate x 2 (�1;1).
Suppose that the movement occurs uniformly in both time and space, so that
the proportion of the pollen grains moved from x to x + y in a time interval
(t; t+�t) of length �t may be written p(y;�t), as this is independent of x and
t. For this time interval we thus obtain the superposition

u(x; t+�t) =

Z 1

�1
u(x� y; t)p(y;�t)dy (3.1)

(valid under suitable smoothness conditions on the functions u and p, none of
our present concern). Further, the function p is supposed to be a probability
density possessing property (1.14), with the �rst two moments proportional to
�t: Z 1

�1
yip(y;�t)dy =

�
��t if i = 1
�2�t if i = 2

where the proportionality parameters � 2 (�1;1) and �2 2 (0;1) are called
the drift and di�usion coe�cients, respectively, for a reason to become clear
soon. Then the Taylor expansion of (3.1) for small increments �t

u(x; t) + �t ut(x; t) + � � �
=

Z 1

�1
fu(x; t)� yux(x; t) +

1

2
y2uxx(x; t) � � � �gp(y;�t)dy

(recall notations (1.18) for corresponding partial derivatives) reduces to the
following second order partial di�erential equation

ut =
1

2
�2uxx � �ux: (3.2)

This is the well-known Fokker-Planck equation for di�usion with drift (see e.g.
[21], section 14.6 or [8], section 5.6). Suppose that initially the grain is at
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certain site x0 say, which yields the initial condition (1.16). Then integrating
(3.2), we obtain

Proposition 3.1. The solution of the partial di�erential equation (3.2) subject

to the initial condition (1.16) is given by (1.15).

Proof. To verify that u given by (1.15) satis�es (3.2), make use of g0(x) =
�xg(x) and calculate directly from (1.15) the corresponding partial derivatives
(1.18). As was already seen in section 1.3 the initial condition (1.16) is satis�ed
as well. The proof is complete. 2

According to the theory of stochastic processes in the particular case of x0 = 0,
� = 0 and � = 1 the u thus obtained turns out to be the transition probability
function for standard Brownian motion (viewed as a Markov process, see e.g.
[26], section 2.4). In general this is the transition probability function for
di�usion that consists of two terms, a deterministic term plus a stochastic
term. The latter term is Brownian motion (which starts from an arbitrary
site x0, not necessarily the origin) scaled by �, a constant associated with the
medium. The deterministic term occurs only in presence of external �eld of
source (e.g. gravity) which causes the drift �t.

In the next section we will discuss the strong similarity between di�usion
and the molecular mechanism of thermal conductance. Of course, in contrast
to di�usion there are no actual migration particles bearing heat, so that in this
case relevant partial di�erential equations of type (3.2) have to be derived by
phenomenological considerations.

3.2. Thermal conductance

In physics equation (3.2) emerges again in the following problem of thermal
conductance. Let u be a certain su�ciently smooth function of its arguments
x and t, space and time coordinates respectively, at least continuously di�er-
entiable in time and twice di�erentiable in space. Consider the partial di�er-
ential equation (3.2) with � = 0. In the present context, this is called the heat
equation, because it describes the temperature distribution of a certain homo-
geneous isotropic body, in the absence of any heat sources within the body
(it is enough for our purposes to restrict the consideration to special case of
`scalar body', a rod; see e.g. [6], [22], [29] or [42]). Otherwise, if a certain
heat source causes temperature change proportional to time, with a propor-
tionality parameter �, then the heat equation is (3.2). In the present context
the parameter �2 is called thermal di�usivity (as was pointed out by Einstein,
�2 = RT

Nf
where R is universal constant depending on suspending material, T

the absolute temperature, N the Avogadro number and f the coe�cient of
friction, see e.g. [45], section 2.1).

Furthermore, in cases where the heat ow consists of both conduction and
radiation, the heat equation has to be altered to include the e�ects of radia-
tion. For instance, consider the temperature distribution in a rod which has
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a longitudinal heat ow due to conduction, as well as heat radiation from the
surface. By Newton's law of surface heat transfer the rate of cooling per unit
length of bar can be estimated by r�u(�; �) where r is a positive constant and �u
a function of x and t expressing the excess of temperature of the bar over its
surroundings. The heat equation then becomes

�ut + r�u =
1

2
�2�uxx � ��ux: (3.3)

But the latter equation is easily reduced to the previous (3.2) by a change of
variable

�u(x; t) = e�rtu(x; t) (3.4)

with u satisfying (3.2). Thus, by integrating (3.2) and substituting the result
into (3.4) we get the solution to (3.3). If, for instance, we look for a particular
solution of (3.3) which yields the temperature distribution within the body due
to a unit source of heat that at the initial date t = 0 is totally concentrated at
a site x0, then according to proposition 3.1 the solution to (3.3) is given by

�u(x; t) = e�rtg(x;x0 + �t; �2t): (3.5)

Consider now the situation in which the distribution of temperature throughout
the body at the initial date t = 0 is not concentrated at a certain site x0 as
before, but presented by a su�ciently smooth function f . Then the problem
of thermal conductance consists of integrating the heat equation (3.3) subject
to the initial condition

�u(x; 0) = f(x): (3.6)

Proposition 3.2. The solution of the heat equation (3.3) subject to the initial

condition (3.6) is given by

v̂(x; t) =

Z 1

�1
�u(y � x; t)f(y)dy (3.7)

with �u of form (3.5) where x0 = 0.

Proof. As was already noted, one can set r = 0 without loss of generality.
Then it is easily seen that (3.7) satis�es (3.2) since the required partial di�er-
entiation can be carried out under the integral sign. To complete the proof,
evaluate (3.7) at t = 0 by taking into consideration (1.15) and the property
(1.17) of the limit (1.16). 2

As was mentioned in section 1.1, the option valuation problem of section 5.3
reveals strong similarity to the problem of heat conduction where at a certain
instant T (call itmaturity, as usual) the distribution of temperature throughout
the body is given and it is required to restore the previous process.

Suppose �rst that at maturity t = T the temperature distribution is totally
concentrated at a certain site x0. Then the problem consists in solving equation
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��ut + r�u =
1

2
�2�uxx � ��ux (3.8)

subject to the boundary condition �u(x; T ) = �(x�x0): By the same arguments
as above, we get the solution (3.5) but now with time to maturity � = T � t
on the right hand side instead of t.

Finally, let the temperature distribution at maturity t = T be presented
by a certain su�ciently smooth function f , so that the boundary condition
becomes

�u(x; T ) = f(x): (3.9)

Then proposition 3.2 yields

Corollary 3.3. The solution of the heat equation (3.8) subject to the bound-

ary condition (3.9) is given by

û(x; t) =

Z 1

�1
�u(x� y; �)f(y)dy (3.10)

with time to maturity � = T � t and with �u of form (3.5) where x0 = 0.

3.3. Modi�ed heat equation

The problem considered at the end of the previous section is a special case of the
general Cauchy problem, the solution of which is known as the Feynman{Kac

formula, see e.g. [29], section 5.7. In this section another special case will be
treated, the solution of which yields in section 5 the celebrated Black{Scholes

formula (5.20) for option valuation, cf [3], [24] or [29], section 5.8.
Let h be a function of a positive space coordinate x 2 (0;1) and time

t 2(0;1). Consider the following partial di�erential equation for x and t

�ht + rh =
1

2
�2x2hxx � �xhx: (3.11)

First look for the particular solution of this equation subject to the boundary
condition that for su�ciently smooth functions f of a positive argument we
have at any positive site x0

lim
t"T

Z 1

0

h(
x

x0
; t)f(x)

dx

x
! f(x0): (3.12)

It is easily veri�ed by the same arguments as above that the solution is given by
h(x; t) = �u(logx; �) where �u is again given by (3.5) but this time with x0 = 0
and with �+ 1

2
�2 instead of �, i.e.

h(x; t) = e�r�g(logx;�� +
1

2
�2�; �2�): (3.13)
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Indeed, (3.11) is obtained by di�erentiating h(x; t) = �u(logx; �) and taking
(3.8) into consideration, and (3.12) by taking the limit as � ! 0 on the right-
hand side ofZ 1

0

h(
x

x0
; t)f(x)

dx

x
= e�r�

Z 1

�1
g(y;�� +

1

2
�2�; �2�)f(x0e

y)dy:

We apply this to the following boundary problem. Let H be a su�ciently
smooth function of a positive argument (e.g. (x � K)+ as in section 4.5).
Integrate (3.11) subject to the boundary condition

�h(x; T ) = H(x): (3.14)

Proposition 3.4. The solution of the modi�ed heat equation (3.11) subject to

the boundary condition (3.14) is given by

�h(x; t) =

Z 1

0

h

�
x

y
; t

�
H(y)

dy

y
(3.15)

with h de�ned by (3.13).

Proof. Write (3.15) in the form

�h(x; t) =

Z 1

�1
�u(log x� y; �)H(ey)dy (3.16)

and apply the same arguments as in the course of proving proposition 3.2. 2

By obvious change of variables we get from (3.13) and (3.16) that

�h(x; t) = e�r�
Z 1

�1
g(y;���; �2�)H(xey�

1

2
�2� )dy; (3.17)

the formula to which we will return in the sections 4.5 and 5.

4. Binary model

4.1. Self-�nancing strategies

In this section we briey review the theory of binary securities markets de-
veloped in the previous parts I and II, section 3. Suppose that one invests an
amount v � 0 in two assets described in section 1.2. Let �N = f	N

t ;�
N
t gt2[0;T ]

be a trading strategy of the investor, with the bond and stock components given
by formulas (3.2.2) and (3.2.3) in part II. At each instant t � 0 the investor
holds 	N

t shares of the bond and �N
t shares of the stock so that the market

value of the holding is

V N (t;�) = 	N
t B

N
t +�N

t S
N
t (4.1)

with the initial value determined by the endowment v = V N (0;�). The process
V N (�) = fV N (t;�)gt2[0;T ] is called the value process for a strategy �N .
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Definition. A trading strategy is said to be self-�nancing if the construction
is founded only on the initial endowment so that all changes in the portfolio
values are due to capital gains during trading and no infusion or withdrawal of
funds takes place. Then the corresponding portfolio satis�es the condition: for
all t 2 [0; T ]

BN
� �	N

t + SN� � �N
t = 0:

Recall that under the self-�nancing condition we have at t 2 (0; T ] not only
(4.1) but also

V N (t�;�) = 	N
t B

N
t� +�N

t S
N
t�; (4.2)

cf. part I, formula (3.2.3). Using the integrating by parts formula we get

Proposition 4.1. A trading strategy �N is self-�nancing if and only if its

discounted value process �V N (�) = f �V N
t (�)gt2[0;T ] admits the following integral

representation: at each t 2 [0; T ]

�V N (t;�) = v +�N � �SNt : (4.3)

Proof. See part II, proposition 3.2.2. 2

In order to rewrite the integral representation 4.3 in Clark's form (cf. part
II, proposition 3.2.6; for Clark's representation, see [35] or [34], proposition
1.3.5), we recall de�nition 3.2.5 in part II of the di�erence operator D in the
state space: the process DSN = fDSNt gt2[0;T ] is de�ned so that DSN(0) =
DSN1 and DSN(t) = DSNd tN

T
e with DS

N
n , n 2 f1; : : : ; Ng in one of the states

fDk(S
N
n )gk=1;:::;2n�1 where Dk(S

N
n ) = sN2k;n � sN2k�1;n. For instance, if t 2�

(n�1)T
N

; nT
N

i
and if SN (t�) is in state sNk;n�1, then DS

N (t) is in state Dk(S
N
n ).

Note that in view of (1.5)

Dk(S
N
n )

2�
p
�tn

=
sNk;n�1

�
rN2k;n � rN2k�1;n

�
2�
p
�tn

= sNk;n�1(1 + �Nk;n�1) (4.4)

with

�Nk;n�1 =
a+ b+ �N2k;n + �N2k�1;n

2�

p
�tn; (4.5)

which under condition S is a negligible remainder term.
We now turn to the value process for a self-�nancing strategy. According

to part II, remark 3.2.3, this is a process of the same type as the stock price
process, since �V N (t;�) = �V N

btN=T c(�) where each �V N
n (�), n 2 f1; : : : ; Ng, may

occupy one of the states

�vNkn(�) = v +

nX
�=1

�N
� (s

N
k��1;��1)(�s

N
k� ;�

� �sNk��1;��1)
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with k = 1; : : : ; 2n, see part II for remark 3.2.3. Next, we let the di�erence
operator D act on V N in the exactly same manner as on SN but this time
with the states vNkn in place of sNkn. Then proposition 3.2.6 in part II tells us

that if the process DV N (�)
DSN

= fDV N (t;�)
DSN (t)

gt2[0;T ] is formed with the help of the

sequence fDV N
n (�)

DSNn
gn=1;:::;N by utilizing b tN

T
c as before, the integrand in (4.3)

can be identi�ed as follows: �N (t) =
DV N (t;�)
DSN (t)

, i.e.

�V N (t;�) = v +
DV N (�)

DSN
� �SNt : (4.6)

This is called Clark's formula, cf. part I, section 3.3 or part II, proposition
4.2.2.

4.2. Risk neutral probabilities

Let us focus our attention on markets excluding arbitrage opportunities (see
part I, section 6). Then for each n = 1; : : : ; N and k = 1; : : : ; 2n�1, the
numerical values of risk neutral probabilities

pN2k;n =
�sNk;n�1 � �sN2k�1;n

�sN2k;n � �sN2k�1;n

=
�Nn � rN2k�1;n

rN2k;n � rN2k�1;n

(4.7)

(cf (1.1) and (1.4)) are positive and pN2k�1;n = 1 � pN2k;n. As was emphasized
in part II, section 3.2, the usage of this term stems from the fact that every
state sNk;n�1 at the trading time tn�1 is expressed as a convex combination of

two alternative states �sN2k�1;n and �sN2k;n at the next trading time tn, weighted

by pN2k�1;n and pN2k;n, respectively. The same is true concerning the states of

the value process V N (�) for any self-�nancing strategy �N : for n = 1; : : : ; N
and k = 1; : : : ; 2n�1

�vNk;n�1(�) = pN2k;n�v
N
2k;n(�) + pN2k�1;n�v

N
2k�1;n(�): (4.8)

It will be shown in the next lemma that asymptotically the risk neutral prob-
abilities of the upward and downward displacements are equal to 1

2 .

Lemma 4.2. Under the conditions B and S the risk neutral probabilities

fpNkngk=1;:::;2n for n = 1; : : : ; N , given by (4.7), are approximated as follows

pNkn �
1

2

�
1 + (�1)k�1�

�

p
�tn

�
(4.9)

with the parameters � > 0 as in (1.5) and � as in (1.10).

Proof. For n = 1; : : : ; N let fNkngk=1;:::;2n be de�ned by the equality

(1 + �Nk;n�1)
N
k;n�1 = %Nn + ��Nk;n�1 �

�N2k;n � �N2k�1;n

2
(4.10)
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with r and %Nn as in condition B, � and f�Nkngk=1;:::;2n as in condition S
and f�Nkngk=1;:::;2n as in (4.5). Hence under the conditions B and S all of
fNkngk=1;:::;2n are negligible so that the desired assertion is a consequence of
the following identity

pNkn =
1

2

 
1 + (�1)k�1

 
�� Nk;n�1

�

!p
�tn

!
(4.11)

which will be proved next.
Since by (1.2) and (1.5)

�Nn � rN2k�1;n = �
p
�tn +

�
r + b+ %Nn + �N2k�1;n

�
�tn

and by (1.5) and (4.5)

rN2k;n � rN2k�1;n = 2�(1 + �Nk;n�1)
p
�tn;

it follows from (4.7) that

�(1 + �Nk;n�1)
�
1� 2pN2k;n

�
= ��Nk;n�1 �

�
r + b+ %Nn + �N2k�1;n

�p
�tn

=

 
�� %Nn +

�N2k;n � �N2k�1;n

2

!p
�tn:

Thus

pN2k;n =
1

2

0
@1� �� %Nn +

�N
2k;n��N2k�1;n

2

�
�
1 + �Nk;n�1

� p
�tn

1
A

which is equivalent to (4.11), since

�� %Nn +
�N2k;n � �N2k�1;n

2
=
�
1 + �Nk;n�1

� �
�� Nk;n�1

�
by (4.10). 2

4.3. Heat equation in �nite di�erences

It will be shown in this section that under conditions B and S we have the
identity in �nite di�erences which has the form of the modi�ed heat equation
(3.11), up to certain negligible remainder terms. This identity concerns the
states vkn = vNkn(�) of the value process V = V N (�) for a self-�nancing strategy
�. For simplicity, the argument � is suppressed, as well as all the upper indices
N . In section 4.1 we already came across �rst di�erences Dk(Vn) = v2k;n �
v2k�1;n for n = 1; : : : ; N and k = 1; : : : ; 2n�1. Along with this, we will need to
recall de�nition 2.4.2 in part I of second di�erences

D2
k(Vn) = v4k;n � v4k�1;n � v4k�2;n + v4k�3;n (4.12)

for n = 2; : : : ; N and k = 1; : : : ; 2n�2.
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Proposition 4.3. Let the conditions B and S hold. Let � be a self-�nancing

strategy and V = fVngn=0;1;:::;N its value process. Then for each n = 2; : : : ; N
and k = 1; : : : ; 2n�2 the following identity hold:

1
2

(�sk;n�2)
2 D2

k(Vn)

Dk(Sn�1)2
(1 + �k;n�2)

2
(1 + &k;n�2)

� (�+ �k;n�2) sk;n�2
Dk(Vn�1)

Dk(Sn�1)

= �v4k�1;n � vk;n�2

tn � tn�2
+ (r + �n�2) vk;n�2 + �k;n�2 (4.13)

where �n; f�kngk=1;:::;2n ; f&kngk=1;:::;2n and f�kngk=1;:::;2n are negligible remain-

der terms, alike f�kngk=1;:::;2n given by (4.5).

Proof. We will prove that the identity (4.13) is satis�ed with the remainder
terms

&k;n�2 = 4p4k;np4k�3;n � 1; (4.14)

�k;n�2 = (1 + �n) (1 + �k;n�2)

�
�� k;n�2 + 2k;n�1

2

�
� �; (4.15)

2�n�2 = %n�1 + %n + (r + %n�1)(r + %n)�tn (4.16)

and

�k;n�2 = p4k;n((1 + �k;n�1) s2k;n�1
D2k(Vn)

D2k(Sn)

2k;n�1 � 2k�1;n�1

2

+
v4k�1;n � vk;n�2

tn � tn�2
� v4k�2;n � vk;n�2

tn � tn�2
): (4.17)

This will imply the desired assertion, since the remainder terms, given by
(4.14) - (4.17) are negligible under the conditions B and S. Indeed, the terms
f&kngk=1;:::;2n are negligible due to (4.9), the terms f�kngk=1;:::;2n due to (1.2),
(4.5) and (4.10) and the terms f�kngk=1;:::;2n due to (4.10) and to the fact that
the di�erence of the second and third terms on the right-hand side is negligible.
Finally, the negligibility of �n is obvious.

To prove (4.13), we proceed as follows. It will be shown �rst that (4.13) is
equivalent to (4.19) given below. Then the latter identity will be proved. Let
us examine (4.13) term by term. Due to (4.4) and (4.14), the �rst term on the
left hand side may be written in the form

p4k;np4k�3;n
D2
k(Vn)

2�tn
:

The second term may be written in the form

(1 + �n)
1� p2k;n�1 � p4k;n

2�tn
Dk(Vn�1);
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since by (4.11) and (4.15)

(1 + �n)�
1� p2k;n�1 � p4k;np

�tn

= (1 + �n)

�
�� k;n�2 + 2k;n�1

2

�

=
�+ �k;n�2

1 + �k;n�2
:

Next, let us handle the right-hand side of (4.13). The sum of the �rst two
terms on this side equals

(1 + �n) (1 + �n�1) vk;n�2 � v4k�1;n

2�tn

by (1.2) and (4.16). On verifying this take into consideration that �tn =
�tn�1 =

T
N
. Finally, by the same assumptions and by (4.4) the third term on

the right, given by (4.17), may be written in the form

p4k;n

2�tn

�
v4k�1;n � v4k�2;n +D2k(Vn)

p
�tn

2k;n�1 � 2k�1;n�1

2�

�
:

Thus we obtain the following identity, equivalent to (4.13):

p4k;np4k�3;nD
2
k(Vn) + (1 + �n) (p2k;n�1 + p4k;n � 1)Dk(Vn�1)

= (1 + �n) (1 + �n�1) vk;n�2 � v4k�1;n

+ p4k;n

�
v4k�1;n � v4k�2;n +D2k(Vn)

p
�tn

2k;n�1 � 2k�1;n�1

2�

�
:

The latter identity, in turn, is equivalent to

(1 + �n)fv2k;n�1p4k�3;n + v2k�1;n�1p4k;n (4.18)

+(p2k;n�1 + p4k;n � 1)Dk(Vn�1)g
� (v4k�1;np4k�3;n + v4k�2;np4k;n)

= (1 + �n)(1 + �n�1)vk;n�2 � v4k�1;n

+ p4k;nfv4k�1;n � v4k�2;n + (p4k;n � p4k�2;n)D2k(Vn)g (4.19)

in virtue of the following two identities. Firstlyp
�tn

2k;n�1 � 2k�1;n�1

2�
= p4k;n � p4k�2;n

which is a consequence of (4.11). Secondly, due to

p4k;np4k�3;nD
2
k(Vn) = (1 + �n) (v2k;n�1p4k�3;n + v2k�1;n�1p4k;n)

� (v4k�1;np4k�3;n + v4k�2;np4k;n)

which is a consequence of (4.12) and (4.8), since

D2
k(Vn) =

(1 + �n) v2k;n�1 � v4k�1;n

p4k;n
� v4k�2;n � (1 + �n) v2k�1;n�1

p4k�3;n
:
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Thus the equivalence of (4.13) and (4.19) is proved. It remains to prove (4.19).
By (4.8) in its non-discounted form

v2k;n�1p4k�3;n + v2k�1;n�1p4k;n � (1 + �n�1) vk;n�2

= v2k;n�1 (p4k�3;n � p2k;n�1) + v2k�1;n�1 (p4k;n � p2k�1;n�1)

= (v2k;n�1 � v2k�1;n�1) (1� p2k;n�1 � p4k;n)

+v2k;n�1 (p4k;n � p4k�2;n)

and

v4k�1;np4k�3;n + v4k�2;np4k;n � v4k�1;n

= v4k�2;np4k;n � v4k�1;np4k�2;n

= v4k�1;n (p4k;n � p4k�2;n)� (v4k�1;n � v4k�2;n) p4k;n:

These two identities imply (4.19). The proof is complete. 2

4.4. Completeness, hedging strategy and option valuation

Given the states of the discounted stock price over the entire trading period
[0; T ], the risk neutral probabilities fpNkngk=1;:::;2n are determined by (4.7).
Fix n 2 f1; : : : ; Ng and k 2 f1; : : : ; 2Ng. In the previous parts (part I, sec-
tion 4.4, and part II, section 3.3) there has been de�ned the set of weights
fPN

nj�(k)g�=0;1;:::;n with PN
nj�(k) = pNk�+1;�+1 � � � pNkn;n for � < n and PN

njn(k) =
1. We have also used the notation PN

kn = PN
nj0(k) = pNk1;1 � � � pNkn;n. As before

kn = d k�1
2N�n e. The aim was to describe the solution of the system of recurrent

equations (cf (4.8))

�xk;n�1 = pN2k;n�x2k;n + pN2k�1;n�x2k�1;n (4.20)

for n = 1; : : : ; N and k = 1; : : : ; 2n�1, subject to the boundary conditions

�xkN = �wN
k (T ) =

W (sNk (T ))

BN (T )
; k = 1; : : : ; 2N ; (4.21)

where f �wN
k (T )gk=1;:::;2N are certain numbers given in the form of a function

W of the stock price at maturity, discounted by BN (T ). It will be clear soon
why we need to solve this boundary problem. For n = 0; 1; : : : ; N the solutions
f �wkngk=1;:::;2n are obtained by

�wN
kn =

X
2N�n(k�1)<j�2N�nk

PN
Njn(j) �w

N
j (T ); k = 1; : : : ; 2n: (4.22)

In particular

wN
10 =

2NX
j=1

PN
j (T ) �wN

j (T ) (4.23)
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where PN
k (T ) = PN

kN . In the trivial case of W (x) = x, for instance, the
boundary conditions (4.21) are speci�ed by �xkN = �sNk (T ) and the solutions
(4.22) and (4.23) reduce to (3.3.7) and (3.3.8) of part II.

Next, we will use (4.22) and (4.23) to describe the completeness of the
binary market. To this end, consider an investor who is willing to invest now
(at t = 0) in the bond and the stock in order to attain at the terminal date
T a certain wealth, say WN (T ), by trading over N periods without infusion
or withdrawal of funds. Knowing the conditions in the market, i.e. knowing
the 2N possible trajectories of the stock price development up to the terminal
date T (which correspond as usual to the states fsNk (T )gk=1;:::;2N of the stock
price SN(T )), the investor determines the wealth he desires to attain at the
terminal date T by evaluating each of these possibilities. In this wayWN (T ) is
interpreted as a variable which may occupy one of the 2N possible states: state
wN
k (T ) say, if the stock price is in state sNk (T ). In other words, WN(T ) is a

certain function of SN (T ), i.e. WN (T ) =W (SN (T )), and wN
k (T ) =W (sNk (T ))

for k = 1; : : : ; 2N .

Definition. A binary market is complete if any desired wealth WN (T ) of
the above type is attainable with a certain initial endowment: there is a self-
�nancing strategy �N whose value process at the terminal date attains the
identity V N(T ;�) = WN (T ). The necessary initial endowment is then v =
V N (0;�).

As is shown in part I, proposition 4.3.3, the present market is indeed com-
plete and, moreover, there exists a unique strategy, called the hedging strategy

against WN (T ), which attains this wealth. In part I, section 4.3, one can �nd
the detailed construction of such strategy. Here we only note that the proce-
dure is based on the solution of the equations (4.20), subject to the boundary
conditions (4.21) with the states of the discounted desired wealth on the right
hand side. If �WN

n is a variable with the possible states f �wN
kngk=1;:::;2n which

are identi�ed with the solutions (4.22), then a process �WN = f �WN
t gt2[0;T ] is

formed by �WN (t) = �WN
btN=T c. Obviously, it starts from (4.23) and at the ter-

minal date T attains the desired wealth. The hedging strategy against �WN (T )
is then a unique strategy �N whose value process V N (�) coincides with the
process WN formed above.

In part I, section 5, formula (4.23) is applied to the following problem of
option pricing. Suppose that today, at time t = 0, we are going to sign a
contract that gives us the right to buy one share of a stock at a speci�ed price
K, called the exercise price, and at a speci�ed time T , called the maturity

or expiration time. If the stock price SN (T ) is below the exercise price, i.e.
SN (T ) � K, then the contract is worthless to us. On the other hand, if
SN (T ) > K, we can exercise our option: we can buy one share of the stock
at the �xed price K and then sell it immediately in the market for the price
SN (T ). Thus this option, called the European call option, yields a pro�t at
maturity T equal to H(SN (T )) where H is a special function of the stock
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price SN (T ) of the form H(x) = maxf0; x � Kg = (x � K)+. It is called
the payo� function for the European call option. A contract with some �xed
payo� function HN (T ) = H(SN (T )), where HN (T ) is a nonnegative variable
with possible states H(sNk (T )) (not necessarily of form (x �K)+) is called a
contingent claim. The European call option is thus a special contingent claim
with payo� (x�K)+.

Now, how much would we be willing to pay at time t = 0 for a ticket which
gives the right to buy at maturity t = T one share of stock with exercise price
K? To put this in another way, what is a fair price to pay at time t = 0 for
the ticket? In order to determine the fair price of a contingent claim, consider
the following procedure:

(i) construct the hedging strategy against the contingent claim in question,
which duplicates the payo�;

(ii) determine the initial wealth needed for construction in (i);

(iii) equate this initial wealth to the fair price of the contingent claim.

In other words, construct the hedging strategy �N against the contingent claim
with a payo� function HN (T ), whose value process V N (�) coincides with a
process that is obtained exactly in the same manner as the process �WN by
solving the equations (4.20), but now subject to the boundary conditions (4.21)

with �hNk (T ) =
H(sNk (T ))

BN (T )
instead of �wN

k (T ) =
W (sNk (T ))

BN (T )
. This strategy indeed

duplicates the payo�. It requires the initial wealth that yields the fair price
CN = C(HN ) of the contingent claim with the payo� function HN (T ) which
amounts to the sum on the right hand side of (4.23) with the same substitution

of �hNk (T ) in place of �wN
k (T ). The European call option, in particular, has a

special payo� function depending only on the stock price at maturity tN = T
and its fair price is

CN =

2NX
j=1

PN
j (T )(�sNj (T )� �K)+: (4.24)

In conclusion we want to recall the application of formula (4.24) to option
valuation in the special binomial markets by means of the Cox-Ross-Rubinstein
formula (5.3.1) in part I. For, we are going to use this particular formula in the
next section.

4.5. Towards the Black-Scholes market

In the present section the link is sought between the binary market of the
present section 4 and the Black-Scholes market of the next section 5. By using
certain heuristic arguments we show that under the conditions B and S the
Black-Scholes model can serve as an approximation to the binary model, when
the number of trading periods N to increase unboundedly and so the length of
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each trading period T
N
tends to zero. For convenience, we will denote di�erently

the bond and stock prices in the Black-Scholes market, namely by B�(t) and
S�(t), respectively. Trading in the latter market is going on continuously so
that t 2 [0; T ]. Concerning the bond, the situation is simple, since condition
B means that at each �xed t 2 [0; T ] the approximation BN (t) � B�(t) holds.
Actually, the approximate bond price is led to be B�(t) = ert, cf (1.3) and
(5.1) below. As for a risky asset, the stock, in the present context we will be
only able to demonstrate certain aspects of the approximation of the process
SN by S�, for more detailed treatment would carry us too far a�eld. It will be
shown, in particular, how to approximate the fair price of the European call
option, see proposition 4.5.

We will use expression (4.11) for the approximate risk neutral probabilities,
but suppress the negligible remainder terms fNkngk=1;:::;2n , as it is not hard
to verify that they play no part in the asymptotic considerations below. Thus
the approximation (4.9) may be used. Since the right hand side in (1.6) is
independent of indices k and n, the situation here is asymptotically similar
to that of the homogeneous binomial model. Thus we may use the Cox-Ross-
Rubinstein option pricing formula (5.3.1) of part I, a special case of the general
option pricing formula (4.24). Upon the substitutions (1.2), (1.6) and (4.9),
this yields the �rst approximation to the option pricing formula:

CN �
�
1 + r

T

N

��N NX
j=0

�
N

j

�
1

2N

 
1� �

�

r
T

N

!j  
1 +

�

�

r
T

N

!N�j

� H

0
@s
 
1 + �

r
T

N
+ a

T

N

!j  
1� �

r
T

N
� b

T

N

!N�j1A (4.25)

with H(x) = (x � K)+, the payo� function for the European call option. It
will be shown below that this approximation can be considerably simpli�ed,
see proposition 4.5. This is preceded by the following

Lemma 4.4. Fix positive integers n and j � n. Denote tj = j
p
2=n so that

�tj �
p
2=n. Then

(i) for a nonnegative constant c 
1 +

p
c
2n

1�p c
2n

!j

� e
p
ctj

and (ii) with g the standard normal density (cf (1.13))

1

22n

�
2n

n+ j

�
� g(tj)�tj : (4.26)

Proof. (i) It follows from log(1 + x) � x that

j

�
log

�
1 +

r
c

2n

�
� log

�
1�

r
c

2n

��
� j

r
2c

n
=
p
ctj ;
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which yields the desired result.
(ii) Presenting the left hand side as the product of

an =
1

22n

�
2n

n

�

and

bn =
n(n� 1) � � � (n� j + 1)

(n+ j) � � � (n+ 1)
=

1

(1 + j
n
)(1 + j

n�1 ) � � � (1 + j
n�j+1 )

we get to show

an � 1p
�n

=
�tjp
2�

and

log bn � �j
2

n
= � t

2
j

2
:

The former relation follows from Stirling's formula n! � e�nnn
p
2�n, truly

from its consequence�
2n

n

�
� 22np

�n
;

see [4], section 1.2. The latter one follows from log(1 + x) � x, since

log bn = �
j�1X
k=0

log

�
1 +

j

n� k

�
� �

j�1X
k=0

j

n� k
� �j

2

n
= � t

2
j

2
:

The proof of (i) is complete. 2

There are various methods for proving the next proposition presented in text-
books on probability theory. In the sequel we will continue to followBreiman [4].

Proposition 4.5. Under conditions B and S the fair price of the European

call option with the payo� function H(x) = (x � K)+, is approximated as

follows:

CN �
Z 1

�1
g(y; 0; �2T )

�
sey�

1

2
�2T � �K

�+
dy (4.27)

where �K = K
B�(T ) = e�rTK is the discounted exercise price, cf (5.1).

Proof. Without loss of generality we assume that N is even. Put N = 2n.
Then the summation in (4.25) may be changed to f�n; : : : ; ng, which yields

CN � Cn
n

nX
j=�n

gjnc
j
nH

�
sKn

nk
j
n

�
(4.28)

51



where gjn denotes the left hand side of (4.26) and

Cn =
1� �2

�2
T
2n�

1 + r T
2n

�2 ; Kn =

 
1 + �

r
T

2n
+ a

T

2n

! 
1� �

r
T

2n
� b

T

2n

!
;

cn =
1� �

�

q
T
2n

1 + �
�

q
T
2n

; kn =
1 + �

q
T
2n + a T

2n

1� �
q

T
2n � b T2n

:

By the well-known property of exponentials

Cn
n � e�rT�

1

2

�2T

�2

and

Kn
n �

�
1 + (a� b� �2)

T

2n

�n
� e

a�b
2

T� 1

2
�2T = e(r+�)T�

1

2
�2T ;

cf (1.10). Apply now lemma 4.4. Assertion (ii) gives an approximation to gjn
and assertion (i) gives

cjn � e�
�
p
Ttj

� and kjn � e�
p
Ttj :

These approximations reduce (4.28) to

CN � e�rTp
2�

nX
j=�n

e�
1

2

(�
p
Ttj+�T )

2

�2T H(se�
p
Ttj+(r+�)T� 1

2
�2T )�tj :

Put �j = �
p
Ttj . Then

CN � e�rT
X
�j2Tn

g(�j ;��T; �2T )H(se�j+(r+�)T� 1

2
�2T )��j

with Tn the set fj�
q

2T
n
gj=0;�1;:::;�n whose lowest entry ��

p
2nT tends to

�1 and the largest entry �
p
2nT to 1 as n ! 1. So the sum in the latter

expression is actually the Riemann sum for the integralZ 1

�1
g(y + �T; 0; �2T )

�
sey+�T�

1

2
�2T � �K

�+
dy

which is independent of � and equals to the integral on the right-hand side of
(4.27). The proof is complete. 2

5. Black-Scholes model

5.1. Assets

In this section we consider the limiting model for a securities market. According
to (1.3), the model for the bond is de�ned by the linear return process R� =
fR�

t gt2[0;T ] and the exponential price process B� = fB�
t gt2[0;T ] with
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R�
t = rt and B�

t = ert (5.1)

where r > 0 is a riskless interest rate on the bond. (Note that B� = E(R�) in
the sense given at the very end of section 2.5.)

The stock is again a risky asset and its return process R� = fR�
t gt2[0;T ] is

de�ned in accordance with the right-hand side of (1.6): the cumulative impact
up to time t of the terms proportional to

p
�tn yieldsWt and that of the terms

proportional to �tn yields the drift 1
2
(a� b)t, see the discussion at the end of

section 1.2. This leads to the following di�usion model R�
t = Wt +

1
2
(a � b)t:

Consequently, the price process on the stock S� = fS�t gt2[0;T ] is now de�ned
by

S�t = sE(R�)t = seWt+
1

2
(a�b)t� 1

2
�2t = seR

�
t� 1

2
hR�it (5.2)

(see application (ii) at the end of section 2.5) where s > 0 is a �xed current
price on the stock S�0 = s and hR�it = �2t as in section 2.4. The discounted
stock price process is de�ned by

�S�t �
S�t
B�
t

= seWt+�t� 1

2
�2t = se

�R�t� 1

2
h �R�it (5.3)

where �R�
t = Wt + �t is the corresponding return at instant t, cf (1.10). The

relation �S� = sE( �R�) is obtained in section 2.5.
As we know, Brownian motion takes its rise at the origin but afterwards at

any consecutive instant t > 0 it may visit any site �1 < x <1. Accordingly,
the non-discounted and discounted stock prices, starting from a �xed state
s > 0, may occupy at any instant t 2 [0; T ] and site �1 < x < 1 one of the
states

s�(x; t) = sexIft6=0g+
1

2
(a�b)t� 1

2
�2t and �s�(x; t) = sexIft6=0g+�t�

1

2
�2t (5.4)

where Ift6=0g is the indicator function equal 1 everywhere except at the origin
t = 0 where it equals to 0. Concerning these states, the following simple
proposition holds true.

Proposition 5.1. (i) At each instant t > 0, the discounted stock price is in

one of the states (5.4) that satis�es the second order partial di�erential equation

(3.8) with r = 0.
(ii) With u given by (1.15) where x0 = 0, we have

�s�(x; t) =
Z 1

�1
u(x� y;�t)�s�(y; t+�t)dy: (5.5)

Proof. (i) The required partial derivatives �s�t , �s
�
x and �s�xx are simply calcu-

lated. Thus (3.2) is easily veri�ed.
(ii) By the obvious property �s�(x + �x; t + �t) = �s�(�x;�t)�s�(x; t) of the
states (5.4), it su�ces to showZ 1

�1
u(x; t)�s�(�x; t)dx = 1:
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But this is easily veri�ed by (1.14) and (1.15). 2

Remark. By analogy to the prelimiting situation, we want to de�ne the di�er-
ence operatorD in the state space. We depart from (4.4) and let �tn = T

N
! 0.

The terms f�Nkngk=1;:::;2n are negligible. According to (1.5) the denominator
2�
p
�tn is the �rst approximation to the di�erence between two alternative

states of the return. Then by the same arguments as above Brownian motion
enters into consideration: we are led to de�ne the limit on the left of (4.4) as
DS�t
DWt

. This yields DS�
DW = S�, one of the �rst formulas of the Malliavin calculus,

see [34], exercise 2.2.1 on p 107.

5.2. Self-�nancing strategies

Let us consider an investor who invests an amount v � 0 in the present market
and then follows a trading strategy � = (	;�) with portfolio components
	 = f	tgt2[0;T ] and � = f�tgt2[0;T ]. The corresponding value process V �(�) =
	B� +�S� is de�ned at t 2 [0; T ] by

V �(t;�) = 	(t)B�(t) + �(t)S�(t) (5.6)

with v = V �(0;�): If � is a self-�nancing strategy in the sense of the def-
inition in section 4.1, then one can apply the integrating by parts formula
of section 2.5 (with respect to the geometric Brownian motion instead of the
ordinary Brownian motion in (2.9); this substitution is allowed by the chain
rule (2.12)). This yields the same integral representation for discounted value
process �V �(�) = f �V �(t;�)gt2[0;T ] as before: at each t 2 [0; T ]

�V �(t;�) = v +� � �S�t ; (5.7)

cf proposition 4.1. Analogously to the trading in binary markets, the self-
�nancing of a strategy � = (	;�) means that the portfolio components 	(t)
and �(t) yield not only the market value of the holding at instant t 2 (0; T ]
(given by (5.6)) but also at an immediate future instant t+�t:

V �(t+�t;�) = 	(t)B�(t+�t) + �(t)S�(t+�t) (5.8)

cf (4.1) and (4.2). Let us denote the possible states of the portfolio components
	(t) and �(t) by f (x; t);�1 < x <1g and f�(x; t);�1 < x <1g respec-
tively, and the states of the discounted market value of this holding �V �(t;�)
by f�v�(x; t;�);�1 < x <1g. Then (5.6) and (5.8) mean both

�v�(x; t;�) =  (x; t) + �(x; t)�s�(x; t) (5.9)

and

�v�(x+�x; t+�t;�) =  (x; t) + �(x; t)�s�(x+�x; t+�t): (5.10)

This fact has the following implication:
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Proposition 5.2. (i) At each instant t > 0, the discounted market value
�V �(t;�) of a self-�nancing strategy � is in one of the states f�v�(x; t;�);�1 <
x < 1g that satis�es the second order partial di�erential equation (3.8) with

r = 0.
(ii) With u given by (1.15) where x0 = 0, we have

�v�(x; t;�) =
Z 1

�1
u(x� y;�t)�v�(y; t+�t;�)dy: (5.11)

Proof. (i) may be obtained from (ii). Indeed, take (5.11) with t+�t = T and

apply to both sides the operator 1
2
�2 @2

@x2
�� @

@x
+ @

@t
. On the right the operator

is allowed to act under the integral sign. But this yields 0, since u(x � y; �)
satis�es (3.8) with r = 0. As usual � = T � t is time to maturity.
(ii) In (5.10) substitute x +�x by a variable y, multiply both sides by u(x �
y;�t) and integrate with respect to dy. By (5.5) and (5.9) we get (5.11). 2

Remark. Like in the previous remark at the end of section 5.1, we recall the
prelimiting situation in which the stock component was expressed as �N (t) =
DV N (t;�)
DSN (t)

, see Clark's formula (4.6). This structure is retained as N !1, thus

giving the possibility to rewrite (5.7) in Clark's form

�V �(t;�) = v +
DV �(�)
DS�

� �S�t : (5.12)

This is again an elementary formula in the Malliavin calculus, see [34], de�nition
1.2.1 on page 24. In the remaining part of this section more light will be shed
on this formula, cf (5.15) below.

There is yet another relationship between the value process for a self-�nancing
strategy and the stock price process. Namely, let �h be a solution of the partial
di�erential equation (3.11) with r = � = 0. Then for each t 2 [0; T ] the
following useful representation can be proved:

�V �(t;�) = �h( �S�(t); t): (5.13)

In the next proposition the proof is provided in the form of the relationship
between the states of the variables on the left and right-hand side.

Proposition 5.3. (i) At each instant t > 0 and site x the states of the dis-

counted stock price �S�(t) and the discounted value �V �(t;�) for a self-�nancing

strategy � are related by

�v�(x; t;�) = �h(�s�(x; t); t) (5.14)

where �h is as in (5.13).

Proof. By taking the relevant partial derivatives on the both sides of (5.14)
we get

1

2
�2�v�xx � ��v�x + �v�t = (

1

2
�2�s�xx � ��s�x + �s�t )�hx +

1

2
�2�s�2x �hxx + �ht
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It remains now to recall the assertion (i) in proposition 5.1 and to apply
(3.11) with r = � = 0 to the sum of the last two terms on the right. In-
deed, by taking into consideration �s�x = �s� we get on the right-hand side
1
2
�2�s�(x; t)2�hxx(�s�(x; t); t) + �ht(�s

�(x; t); t) which equals 0 in view of the as-

sumption that �h satis�es (3.11) with r = � = 0. This means that (5.14)
satis�es (3.8) with r = 0, cf proposition 5.2, assertion (i). 2

Let us apply Itô's formula (2.13) to (5.13). Taking into consideration also the
expression (2.11) for the quadratic variation and the chain rule (2.12), we get

�V �(t;�) = �V �(0;�) +
Z t

0

�hx( �S
�(�); �)d �S�(�) +

Z t

0

�ht( �S
�(�); �)d�

+
1

2
�2
Z t

0

�hxx( �S
�(�); �) �S�(�)2d�;

cf [24], formula (1.12). But the last two terms vanish, since �h satis�es (3.11)
with r = � = 0. We thus have the integral representation (5.7) (or (5.12)) with

�(t) =
DV �(t; �)
DS�(t)

= �hx( �S
�(t); t): (5.15)

Formula (5.13) is often presented in its nondiscounted form (see e.g. [24],
formula (1.8), or [29], formula (5.8.36)):

V �(t; �) = �h(S�(t); t) (5.16)

where �h satis�es (3.11) with r = ��. Formula (5.15) for the stock component
of the portfolio becomes �(t) = �hx( �S

�(t); t). One can easily verify these claims

by taking into consideration that �h(x; t) = ert�h(e�rtx; t). Of course, the factor
ert means discounting, so (cf (5.1) and (5.3))

�h( �S�(t); t) =
�h(S�(t); t)
B�(t)

: (5.17)

5.3. Hedging strategies and option pricing

In the present section the same question as in section 4 arises whether the
Black-Scholes market is complete or not. In order to formulate this question
explicitly, consider again an investor whose goal is to attain at the terminal
date T a certain wealth W (T ) = W (S�(T )) which is a certain function W of
the stock price W (S�(T )). According to (5.4) this wealth may be in one of the
states

w�(x; T ) =W (s�(x; T )); �1 < x <1. (5.18)

If we now de�ne the completeness of the present market similarly to the de�-
nition in section 4.4, then we get
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Proposition 5.4. The Black{Scholes market is complete: any desired wealth

W (T ) of the above type is attainable with a certain initial endowment, since

there is a uniquely de�ned self-�nancing strategy �� = (	�;��), called the

hedging strategy againstW (T ), whose value process V �(��) = fV �(t;��)gt2[0;T ]
attains at the terminal date T the identity V �(T ;��) = W (T ). The necessary

initial endowment is then v = V �(0;��).

Proof. This follows from the explicit construction of the hedging strategy
�� = (	�;��) against W (T ) which is provided below.

The hedging strategy �� = (	�;��) againstW (T ) is constructed as follows.
Let �h be the solution of (3.11) with r = ��, subject to the boundary condition
(3.14) where H(x) is identi�ed with w�(x; T ) given by (5.18). According to
proposition 3.4 this function has the representation (3.17) with r = �� and
with H substituted by W . Alternatively, we may work as in the previous
section with �h which solves (3.11) with r = � = 0 and is related to �h via (5.17).

Recall that �hx = �hx. Use the notations

 �(x; t) = �h(x; t)� x�hx(x; t) = e�rt�h(ertx; t)� x�hx(x; t)

and

��(x; t) = �hx(x; t) = �hx(x; t)

to de�ne the strategy �� = (	�;��) with 	�(t) =  �( �S�(t); t) and ��(t) =
��( �S�(t); t). By de�nition (5.6) the market value of the latter holding is simply
determined:

V �(t; ��) =  �( �S�(t); t)B�(t) + ��( �S�(t); t)S�(t) = �h(S�(t); t);

cf (5.16). This is indeed the hedging strategy, since at maturity the market
value V �(T; ��) = �h(S�(T ); T ) amounts to the desired wealth W (S�(T )) in
virtue of the boundary condition �xed above. Thus the desired wealth is at-
tained. In view of (3.17) with r = ��, the necessary initial endowment amounts
to

v = V �(0;��) = e�rT
Z 1

�1
g(y; 0; �2T )H(xey+rT�

1

2
�2T )dy: (5.19)

with H substituted by W . 2

Observe that in the special case of H(x) = (x � K)+ the right-hand side
reduces to the integral in (4.27). This is not just a coincidence, as the reader
might guess knowing the methodology of option pricing by means of a hedging
strategy that duplicates the payo� (see part I, section 5, or the present part,
section 4.4). We conclude this section with some more details on this.

We are now going to use formula (5.19) for solving the problem of pricing
contingent claims as is already described in section 4.4. Let the payo� function
of a contingent claim be determined by a certain nonnegative function H of
the stock price at maturity S�(T ), i.e. H(T ) = H(S�(T )). According to the
procedure developed in section 4.4, we have
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Proposition 5.5. In the Black{Scholes market the fair price C(H) of a con-

tingent claim with the payo� function H(T ) = H(S�(T )) is identi�ed with the

right-hand side of (5.19).

As was already mentioned, formula (5.19) applied to the special payo� (x�K)+

determines the fair price C of the European call option, which coincides with
the integral in (4.27). It is now easy to present C in the form (5.20) below,
suitable for calculations by using tables of the standard normal distribution.
This is called the Black{Scholes option valuation formula.

Corollary 5.6. In the Black{Scholes market the fair price C of the European

call option is presented as follows

C = sG

�
log s

K
+ rT + 1

2�
2T

�
p
T

�
� e�rTKG

�
log s

K
+ rT � 1

2�
2T

�
p
T

�
(5.20)

with G the standard normal distribution, cf (1.12).

Proof. The right-hand side in (4.27), equal toZ 1

�1
g(y;

1

2
�2T; �2T )

�
se�y � �K

�+
dy;

reduces toZ log s
K

�1
g(y;�rT +

1

2
�2T; �2T )

�
se�(y+rT ) � �K

�
dy

=

Z log s
K

�1
sg(y;�rT � 1

2
�2T; �2T )dy

� �K

Z log s
K

�1
g(y;�rT +

1

2
�2T; �2T )dy:

By (1.12) the right-hand side coincides with that of (5.20). The proof is com-
plete. 2

Using similar considerations one can specify the hedging strategy �� = (	�;��)
against the European call option by the portfolio components at t 2 [0; T ] and
� = T � t

	�(t) = �e�rtKG
 
log

S�(t)
K

+ r� � 1
2�

2�

�
p
�

!

and

��(t) = G

 
log S�(t)

K
+ r� + 1

2
�2�

�
p
�

!
:
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